Turing instability for a ratio-dependent predator-prey model with diffusion
نویسندگان
چکیده
Ratio-dependent predator-prey models have been increasingly favored by field ecologists where predator-prey interactions have to be taken into account the process of predation search. In this paper we study the conditions of the existence and stability properties of the equilibrium solutions in a reaction-diffusion model in which predator mortality is neither a constant nor an unbounded function, but it is increasing with the predator abundance. We show that analytically at a certain critical value a diffusion driven (Turing type) instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion). We also show that the stationary solution becomes unstable with respect to the system with diffusion and that Turing bifurcation takes place: a spatially non-homogenous (non-constant) solution (structure or pattern) arises. A numerical scheme that preserve the positivity of the numerical solutions and the boundedness of prey solution will be presented. Numerical examples are also included.
منابع مشابه
Threshold harvesting policy and delayed ratio-dependent functional response predator-prey model
This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...
متن کاملSpatiotemporal Dynamics of a Diffusive Leslie-Gower Predator-Prey Model with Ratio-Dependent Functional Response
This paper is devoted to the study of spatiotemporal dynamics of a diffusive Leslie–Gower predator–prey system with ratio-dependent Holling type III functional response under homogeneous Neumann boundary conditions. It is shown that the model exhibits spatial patterns via Turing (diffusion-driven) instability and temporal patterns via Hopf bifurcation. Moreover, the existence of spatiotemporal ...
متن کاملDiscretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کاملSpatiotemporal pattern formation in a prey-predator model under environmental driving forces
Many existing studies on pattern formation in the reaction-diffusion systems rely on deterministic models. However, environmental noise is often a major factor which leads to significant changes in the spatiotemporal dynamics. In this paper, we focus on the spatiotemporal patterns produced by the predator-prey model with ratio-dependent functional response and density dependent death rate of pr...
متن کاملPattern Formation in a Semi-Ratio-Dependent Predator-Prey System with Diffusion
We investigate spatiotemporal dynamics of a semi-ratio-dependent predator-prey system with reaction-diffusion and zero-flux boundary. We obtain the conditions for Hopf, Turing, and wave bifurcations of the system in a spatial domain by making use of the linear stability analysis and the bifurcation analysis. In addition, for an initial condition which is a small amplitude random perturbation ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 217 شماره
صفحات -
تاریخ انتشار 2011